856 research outputs found

    The low-temperature energy calibration system for the CUORE bolometer array

    Full text link
    The CUORE experiment will search for neutrinoless double beta decay (0nDBD) of 130Te using an array of 988 TeO_2 bolometers operated at 10 mK in the Laboratori Nazionali del Gran Sasso (Italy). The detector is housed in a large cryogen-free cryostat cooled by pulse tubes and a high-power dilution refrigerator. The TeO_2 bolometers measure the event energies, and a precise and reliable energy calibration is critical for the successful identification of candidate 0nDBD and background events. The detector calibration system under development is based on the insertion of 12 gamma-sources that are able to move under their own weight through a set of guide tubes that route them from deployment boxes on the 300K flange down into position in the detector region inside the cryostat. The CUORE experiment poses stringent requirements on the maximum heat load on the cryostat, material radiopurity, contamination risk and the ability to fully retract the sources during normal data taking. Together with the integration into a unique cryostat, this requires careful design and unconventional solutions. We present the design, challenges, and expected performance of this low-temperature energy calibration system.Comment: To be published in the proceedings of the 13th International Workshop on Low Temperature Detectors (LTD), Stanford, CA, July 20-24, 200

    experimental investigation of steam condensation in water tank at sub atmospheric pressure

    Get PDF
    Abstract The International Thermonuclear Experimental Reactor (ITER) Vacuum Vessel Pressure Suppression System (VVPSS) limits the Vacuum Vessel (VV) internal pressure, in case of loss of coolant (LOCA) or other pressurizing accidents from the in-vessel components, to 150 kPa (abs). This is key safety function because a large internal pressure could lead to a breach of the primary confinement barrier. Safety is ensured by discharging the steam evolved during the accident event to the VVPSS suppression tanks where it is condensed. Steam condensation occurs at sub-atmospheric pressure condition. Moreover, being this latter not standard for traditional nuclear systems, this investigation is quite new (not studied in detail before) and deals with an experimental investigation of the direct contact condensation at VVPSS prototypical thermal-hydraulic conditions. To the purpose, a small-scale experimental rig was properly designed and built at Lab. B. Guerrini of DICI-University of Pisa as well as different temperature, pressure and steam mass (flow rate per hole) conditions and sparger patterns have been investigated. The experimental test matrix is also presented in this study. The obtained results show high efficiency of condensation for all examined conditions. The main condensation regimes at sub-atmospheric pressure conditions were identified. In addition, a comparison was done between the condensation regimes experimentally determined and those available in the literature, which were obtained at atmospheric pressure. Finally, results demonstrated to be representative of the real configuration at ITER reactor

    Case Histories of Widespread Liquefaction and Lateral Spread Induced by the 2007 Pisco, Peru Earthquake

    Get PDF
    Case histories of widespread liquefaction and lateral spread induced by the Mw 8.0, 2007 Pisco, Peru earthquake and observed during a post-earthquake GEER reconnaissance are presented. A long duration of the earthquake over 200 seconds and two phases of strong ground motion induced widespread liquefaction and lateral spread of sand coastal deposits and road embankments over a total length of approximately 100 km of coastal region. Six case histories of liquefaction are presented and discussed including a massive lateral spread of a marine terrace believed to be as large or even larger than that reported along the Shinano River during the 1964 Niigata earthquake in Japan

    Actigraphic sleep detection: an artificial intelligence approach

    Get PDF
    Objective: Polysomnography is the gold standard for sleep monitoring, despite its many drawbacks: it is complex, costly and rather invasive. Medical-grade actigraphy represents an acceptably accurate alternative for the estimation of sleep patterns in normal, healthy adult populations and in patients suspected of certain sleep disorders. An increasing number of consumer-grade accelerometric devices populate the “quantified-self” market but the lack of validation significantly limits their reliability. Our aim was to prototype and validate a platform-free artificial neural network (ANN) based algorithm applied to a high performance, open source device (Axivity AX3), to achieve accurate actigraphic sleep detection. Methods: 14 healthy subjects (29.35 14.40 yrs, 7 females) were equipped for 13.3 2.58 h with portable polysomnography (pPSG), while wearing the Axivity AX3. The AX3 was set to record 3D accelerations at 100 Hz, with a dynamic range of 8 g coded at 10 bit. For the automatic actigraphy-based sleep detection, a 4 layer artificial neural network has been trained, validated and tested against the pPSG-based expert visual sleep-wake scoring. Results: When compared to the pPSG gold standard scoring, the ANN-based algorithm reached high concordance (85.3 0.06%), specificity (87.3 0.04%) and sensitivity (84.6 0.1%) in the detection of sleep over 30-sec epochs. Moreover there were no statistical differences between pPSG and actigraphy-based Total Sleep Time and Sleep Efficiency measurements (Wilcoxon test). Conclusions: The high concordance rate between ANN-actigraphy scoring and the standard visual pPSG one suggests that this approach could represent a viable method for collecting objective sleep-wake data using a high performance, open source actigraph

    The RCK2 domain of the human BKCa channel is a calcium sensor

    Get PDF
    Large conductance voltage and Ca2+-dependent K+ channels (BKCa) are activated by both membrane depolarization and intracellular Ca2+. Recent studies on bacterial channels have proposed that a Ca2+-induced conformational change within specialized regulators of K+ conductance (RCK) domains is responsible for channel gating. Each pore-forming α subunit of the homotetrameric BKCa channel is expected to contain two intracellular RCK domains. The first RCK domain in BKCa channels (RCK1) has been shown to contain residues critical for Ca2+ sensitivity, possibly participating in the formation of a Ca2+-binding site. The location and structure of the second RCK domain in the BKCa channel (RCK2) is still being examined, and the presence of a high-affinity Ca2+-binding site within this region is not yet established. Here, we present a structure-based alignment of the C terminus of BKCa and prokaryotic RCK domains that reveal the location of a second RCK domain in human BKCa channels (hSloRCK2). hSloRCK2 includes a high-affinity Ca2+-binding site (Ca bowl) and contains similar secondary structural elements as the bacterial RCK domains. Using CD spectroscopy, we provide evidence that hSloRCK2 undergoes a Ca2+-induced change in conformation, associated with an α-to-β structural transition. We also show that the Ca bowl is an essential element for the Ca2+-induced rearrangement of hSloRCK2. We speculate that the molecular rearrangements of RCK2 likely underlie the Ca2+-dependent gating mechanism of BKCa channels. A structural model of the heterodimeric complex of hSloRCK1 and hSloRCK2 domains is discussed

    Heart rate detection by Fitbit ChargeHR™: A validation study versus portable polysomnography

    Get PDF
    Consumer "Smartbands" can collect physiological parameters, such as heart rate (HR), continuously across the sleep-wake cycle. Nevertheless, the quality of HR data detected by such devices and their place in the research and clinical field is debatable, as they are rarely rigorously validated. The objective of the present study was to investigate the reliability of pulse photoplethysmographic detection by the Fitbit ChargeHR (FBCHR, Fitbit Inc.) in a natural setting of continuous recording across vigilance states. To fulfil this aim, concurrent portable polysomnographic (pPSG) and the Fitbit's photoplethysmographic data were collected from a group of 25 healthy young adults, for ≥12hr. The pPSG-derived HR was automatically computed and visually verified for each 1-min epoch, while the FBCHR HR measurements were downloaded from the application programming interface provided by the manufacturer. The FBCHR was generally accurate in estimating the HR, with a mean (SD) difference of -0.66(0.04)beats/min (bpm) versus the pPSG-derived HR reference, and an overall Pearson's correlation coefficient (r) of 0.93 (average per participant r=0.85±0.11), regardless of vigilance state. The correlation coefficients were larger during all sleep phases (rapid eye movement, r=0.9662; N1, r=0.9918; N2, r=0.9793; N3, r=0.9849) than in wakefulness (r=0.8432). Moreover, the correlation coefficient was lower for HRs of >100bpm (r=0.374) than for HRs of <100bpm (r=0.84). Consistently, Bland-Altman analysis supports the overall higher accuracy in the detection of HR during sleep. The relatively high accuracy of FBCHR pulse rate detection during sleep makes this device suitable for sleep-related research applications in healthy participants, under free-living conditions

    Sensory Processing Across Conscious and Nonconscious Brain States: From Single Neurons to Distributed Networks for Inferential Representation

    Get PDF
    Neuronal activity is markedly different across brain states: it varies from desynchronized activity during wakefulness to the synchronous alternation between active and silent states characteristic of deep sleep. Surprisingly, limited attention has been paid to investigating how brain states affect sensory processing. While it was long assumed that the brain was mostly disconnected from external stimuli during sleep, an increasing number of studies indicates that sensory stimuli continue to be processed across all brain states—albeit differently. In this review article, we first discuss what constitutes a brain state. We argue that—next to global, behavioral states such as wakefulness and sleep—there is a concomitant need to distinguish bouts of oscillatory dynamics with specific global/local activity patterns and lasting for a few hundreds of milliseconds, as these can lead to the same sensory stimulus being either perceived or not. We define these short-lasting bouts as micro-states. We proceed to characterize how sensory-evoked neural responses vary between conscious and nonconscious states. We focus on two complementary aspects: neuronal ensembles and inter-areal communication. First, we review which features of ensemble activity are conducive to perception, and how these features vary across brain states. Properties such as heterogeneity, sparsity and synchronicity in neuronal ensembles will especially be considered as essential correlates of conscious processing. Second, we discuss how inter-areal communication varies across brain states and how this may affect brain operations and sensory processing. Finally, we discuss predictive coding (PC) and the concept of multi-level representations as a key framework for understanding conscious sensory processing. In this framework the brain implements conscious representations as inferences about world states across multiple representational levels. In this representational hierarchy, low-level inference may be carried out nonconsciously, whereas high levels integrate across different sensory modalities and larger spatial scales, correlating with conscious processing. This inferential framework is used to interpret several cellular and population-level findings in the context of brain states, and we briefly compare its implications to two other theories of consciousness. In conclusion, this review article, provides foundations to guide future studies aiming to uncover the mechanisms of sensory processing and perception across brain states

    Consciousness Regained: Disentangling Mechanisms, Brain Systems, and Behavioral Responses

    Get PDF
    How consciousness (experience) arises from and relates to material brain processes (the "mind-body problem") has been pondered by thinkers for centuries, and is regarded as among the deepest unsolved problems in science, with wide-ranging theoretical, clinical, and ethical implications. Until the last few decades, this was largely seen as a philosophical topic, but not widely accepted in mainstream neuroscience. Since the 1980s, however, novel methods and theoretical advances have yielded remarkable results, opening up the field for scientific and clinical progress. Since a seminal paper by Crick and Koch (1998) claimed that a science of consciousness should first search for its neural correlates (NCC), a variety of correlates have been suggested, including both content-specific NCCs, determining particular phenomenal components within an experience, and the full NCC, the neural substrates supporting entire conscious experiences. In this review, we present recent progress on theoretical, experimental, and clinical issues. Specifically, we (1) review methodological advances that are important for dissociating conscious experience from related enabling and executive functions, (2) suggest how critically reconsidering the role of the frontal cortex may further delineate NCCs, (3) advocate the need for general, objective, brain-based measures of the capacity for consciousness that are independent of sensory processing and executive functions, and (4) show how animal studies can reveal population and network phenomena of relevance for understanding mechanisms of consciousness.European Union's Horizon 2020 Research and Innovation ProgrammeHermann and Lilly Schilling FoundationGerman Research FoundationCenter for Nanoscale Microscopy and Molecular Physiology of the BrainNational Institutes of Health/National Institute of Neurological Disorders and StrokeSao Paulo Research FoundationJames S. McDonnell Foundation Scholar AwardEU Grant H2020-FETOPENCanadian Institute for Advanced ResearchAzrieli Program in Brain, Mind and ConsciousnessFLAG-ERA JTC project CANONNorwegian Research CouncilNetherlands Organization for Scientific ResearchUniv Oslo, Inst Basal Med Sci, Div Physiol, Dept Mol Med, POB 1103 Blindern, N-0317 Oslo, NorwayUniv Wisconsin, Dept Neurol, Madison, WI 53705 USAUniv Wisconsin, Dept Psychiat, Madison, WI 53719 USAUniv Fed Sao Paulo, Inst Sci & Technol, BR-12231280 Sao Jose Dos Campos, SP, BrazilUniv Milan, Dept Biomed & Clin Sci Luigi Sacco, I-20157 Milan, ItalyFdn Don Carlo Gnocchi ONLUS, Ist Ricovero & Cura Carattere Sci, I-20162 Milan, ItalyUniv Amsterdam, Swammerdam Inst Life Sci, Cognit & Syst Neurosci Grp, NL-1098 XH Amsterdam, NetherlandsUniv Amsterdam, Res Prior Program Brain & Cognit, NL-1098 XH Amsterdam, NetherlandsUniv Med Goettingen, Dept Cognit Neurol, D-37075 Gottingen, GermanyLeibniz Inst Primate Res, German Primate Ctr, D-37077 Gottingen, GermanyLeibniz Sci Campus Primate Cognit, D-37077 Gottingen, GermanyUniv Fed Sao Paulo, Inst Sci & Technol, BR-12231280 Sao Jose Dos Campos, SP, BrazilEuropean Union's Horizon 2020 Research and Innovation Programme: 720270German Research Foundation: WI 4046/1-1National Institutes of Health/National Institute of Neurological Disorders and Stroke: 1R03NS096379FAPESP: 2016/08263-9EU Grant H2020-FETOPEN: RIA 686764Web of Scienc
    • …
    corecore